TEMA 2 APRENDIZAJE INDUCTIVO

Francisco José Ribadas Pena, Santiago Fernández Lanza

Modelos de Razonamiento y Aprendizaje 5º Informática ribadas@uvigo.es, sflanza@uvigo.es

28 de enero de 2013

- 2.1 Introducción
- 2.2 Métodos generales
 - Búsqueda por la mejor hipótesis
 - Búsqueda por espacio de versiones
- 2.3 Aprendizaje de Arboles de Decisión
 - Introducción
 - Algoritmo de construcción
 - Problemas
 - Extensiones
- 2.4 Programación Lógica Inductiva
 - Introducción
 - Algoritmo FOIL
 - Ejemplo

2.1 Introducción

Sigue el esquema del razonamiento inductivo:

```
Conjunto Premisas (conocimiento particular - ejemplos)
------
Conclusión (conocimiento general - hipótesis)
```

(la conclusión se sigue de las premisas con una probabilidad)

- Identifica conocimiento general (hipótesis) a partir de conocimiento particular (ejemplos)
- Puede verse como el proceso de aprender una función c(x) a partir de un conjunto de ejemplos.
 - ullet En aprendizaje supervisado: Un ejemplo es un par $[{f e},{f c}({f e})]$
 - ullet **Objetivo:** dado un conj. de ejemplos encontrar una función ${f h}$ (hipótesis) que aproxime a ${f c}$
 - Caso más simple: funciones booleanas (SALIDA: verdadero, falso)
- Propiedades de las hipótesis:
 - Hipotesis Completa: cubre todos los ejemplos positivos
 - Hipotesis Correcta: no cubre ningún ejemplo negativo
- Hipótesis de partida en el aprendizaje inductivo:

Si una hipótesis describe bien el concepto meta de acuerdo a un número suficientemente grande de ejemplos de entrenamiento, también lo describirá bien ante ejemplos futuros nunca vistos

- Importante: capacidad de generalizar
- Capacidad de aprendizaje viene determinada por:
 - 1. Lenguaje de representención de las hipótesis (lenguaje de hipótesis)
 - Determina el espacio de hipótesis (language bias)
 - 2. Procedimiento (algoritmo de búsqueda) para inferir hipótesis a partir de ejemplos (search bias)
- Ambos aspectos determinan preferencias en el aprendizaje (sesgos o bias)

- **Espacio de Hipótesis:** Conjunto de todas las posibles representaciones de hipótesis que se pueden formular empleando el lenguaje de hipótesis. $\mathbf{H} = \{H_1, H_2, ..., H_n\}$
 - Lenguaje determina espacio de hipótesis ⇒ impone restricciones (sesgo)
 - Contraposición Expresividad vs. Eficiencia
 - Depende del área de aplicación, del método de aprendizaje, etc...
- Inducción puede verse como un proceso de búsqueda en un espacio de hipótesis.
 - Búsqueda sistemática: general, pero demasiado costosa (espacio búsqueda muy grande)
 - ullet Necesidad estructurar espacio de hipótesis \Rightarrow uso de la relación de generalización

2.2 Métodos generales

- Técnicas generales de aprendizaje inductivo.
 - Aplicables en cualquier problema
 - No eficientes en problemas de tamaño real
- Extensión de una hipótesis: conjunto de ejemplos que dicha hipótesis predice correctamente
 - Dos hipótesis son equivalentes si tienen idéntica extensión
 - Hipótesis H_i es <u>consistente</u> con un ejemplo si lo predice correctamente
 - Hipótesis inconsistentes (deben ser rechazadas):
 - \circ Falso positivo: H_i predice positivo cuando es negativo
 - \circ Falso negativo: H_i predice negativo cuando es positivo
- Relación de generalización: "Una hipótesis \mathbf{H}_1 es <u>más general</u> que otra \mathbf{H}_2 ($\mathbf{H}_1 \geq \mathbf{H}_2$), si cualquier ejemplo que sea consistente con \mathbf{H}_2 lo es también con \mathbf{H}_1 "
 - Relación de orden parcial
 - Permite ordenar las hipótesis

2.2.1 Búsqueda mejor hipótesis

■ IDEA: Mantener una ÚNICA hipótesis e ir ajustándola a medida que aparecen nuevos ejemplos.

ALGORITMO:

Dada la hipótesis actual H_i .

Para cada nuevo ejemplo de entrenamiento e, se construye H_{i+1} :

- 1. Si $H_i(e)$ es falso negativo:
 - ullet aumentar la extensión de H_i para incluirlo (generalización)
- 2. Si $H_i(e)$ es falso positivo:
 - ullet reducir la extensión de H_i para eliminarlo (especialización)
- 3. Si predicción correcta: no cambiar
- **Generalización/especialización**: operaciones que cambian la *extensión* de una hipótesis.
 - Dependen del lenguaje de representación de hipótesis
 - *Ejemplo:* Usando representaciones lógicas (conjunción de condiciones):
 - o Generalización: eliminar condiciones
 - o Especialización: añadir condiciones

■ PROBLEMAS:

- Necesidad de verificar la corrección de la nueva hipótesis con respecto a TODOS los ejemplos anteriores en cada iteración (mantener consistencia)
- Difícil encontrar heurísticas que guíen la búsqueda

2.2.2 Búsqueda por el menor compromiso (espacio de versiones)

- **IDEA**: Mantener el conjunto de TODAS las hipótesis consistentes con los ejemplos estudiados hasta el momento.
 - Con cada nuevo ejemplo, se irán eliminando hipótesis no consistentes
- Espacio de versiones: Conjunto de todas las hipótesis consitentes con los ejemplos recibidos hasta el momento
- Representación del conjunto de hipótesis:
 - 1^a Aprox.:Disyunción de todas las posibles hipótesis consistentes
 - Problema: Espacio muy grande ⇒ usar representación más compacta
 - Solución: Usar un ordenamiento (relación de generalización)
 - o Analogía con nº reales : [1,2] representa todos los reales entre 1 y 2
 - o Manejar sólo dos subconjuntos de hipótesis (fronteras)

• Conjuntos frontera:

- o Conjunto G: Frontera hipótesis más generales
 - ♦ Toda hipótesis de G es consistente con los ejemplos vistos y no hay hipótesis consistentes más generales.
 - Resume toda la información conocida sobre ejemplos negativos (los delimita)
- o Conjunto S: Frontera hipótesis más específicas
 - ♦ Toda hipótesis de S es consistente con los ejemplos vistos y no hay hipótesis consistentes más específicas.
 - Resume toda la información conocida sobre ejemplos positivos (los delimita)
- o Toda hipótesis entre G y S es consistente

- Funcionamiento: Con cada nuevo ejemplo, se eliminan las hipótesis no consistentes
 - G se hace más específico y S se hace más general
 - \bullet Ejemplos positivos: mueven S hacia G (hacia arriba)
 - Ejemplos negativos: mueven G hacia S (hacia abajo)
- Espacio de versiones inicial: Debe representar a todas las posibles hipótesis consistentes.
 - G: mayor conjunto posible de hipótesis consistentes
 - ightarrow Usando representación lógica: $\mathbf{G} = \mathsf{verdadero}$ (contiene todo)
 - S: menor conjunto posible de hipótesis consistentes
 - ightarrow Usando representación lógica: $\mathbf{S}=\mathsf{falso}$ (no contiene nada)

■ ALGORITMO: Actualización de G y S

Para cada nuevo nuevo ejemplo e:

- 1. Si e es un ejemplo positivo
 - a) Eliminar de ${f G}$ todas las hipótesis inconsistentes con e (falso negativo)
 - b) Para cada s_i de ${f S}$ inconsistente (falso negativo)
 - 1) Sustituir s_i por sus generalizaciones más inmediatas
 - ullet que sean consistentes con e
 - ullet que exista en G hipótesis más generales que ellas
 - 2) Eliminar las hipótesis nuevas que sean más generales (menos específicas) que otras ya presentes en ${f S}$
- 2. Si e es un ejemplo negativo
 - a) Eliminar de ${\bf S}$ todas las hipótesis inconsistentes con e (falso positivo)
 - b) Para cada g_i de ${f G}$ inconsistente (falso positivo)
 - 1) Sustituir g_i por sus especializaciones más inmediatas
 - ullet que sean consistentes con e
 - ullet que exista en S hipótesis más específicas que ellas
 - 2) Eliminar las hipótesis nuevas que sean más específicas (menos generales) que otras ya presentes en ${f G}$

Finalización:

- ullet Si ${f G}$ y ${f S}$ convergen \Rightarrow encontrada la única hipótesis en el lenguaje usado consistente con los datos
- ullet Si ${f G}$ o ${f S}$ se vuelven vacíos \Rightarrow no hay en el lenguaje usado hipótesis consistentes con los datos
- Si se acaban los ejemplos sin llegar a estos casos ⇒ tenemos una disyunción de posibles hipótesis ⇒ Combinar sus predicciones (votación, ponderación...)

Problemas:

- Calcular relación más general y definir los operadores de especialización/generalización
 - Coste computacional depende de la expresividad del lenguaje (coste transformaciones)
- Sensible a presencia de ruido (ejemplos incorrectos) ⇒ el ruido hará que se seleccionen hipótesis incorrectas
- Sensible a carencia de número de ejemplos ⇒ espacio de versiones se colapsará (vacío)
- ullet Si no se restringe la representación de ${f S}$ y ${f G}$ \Rightarrow degenera y no generaliza
 - S: disyunción de ejemplos positivos
 - o G: negación de disyunción de ejemplos negativos

Ventajas:

- Modelo de algoritmo general para aprendizaje inductivo
- Aplicable en problemas "adecuados"
- Sirve de punto de partida general para otros métodos más específicos/eficientes